|
Freedom of choice for welding robots – KUKA robots
The arms and wrists of the welding robot are the basic parts of the movement. The robot arm of any design has three degrees of freedom to ensure that the end of the arm can reach any point in its working range. The three degrees of freedom of the wrist are the inverse transport of the three axes X, Y, Z perpendicular to each other in space.
|
|
KUKA KR CYBERTECH ARC NANO product family robots
KUKA Industrial Robots The KR CYBERTECH ARC NANO product family offers unrivalled functionality and power density in the load range of 6 to 10 kg. The KR CYBERTECH nano series can be adapted to customer-specific needs and is suitable for a wide range of general rail applications.
|
|
Common faults and solutions for KUKA teaching pendant maintenance
1: KUKA Robot Teach Pendant Bad Contact or Partial Ineffective (Replacement Contact Panel)
2: KUKA Robot Teach Pendant does not appear (repair or replace the internal motherboard or LCD screen)
3: KUKA Robot ...
|
|
A way to identify the advantages and disadvantages of a reducer – a KUKA robot
01 Transmission power: The output power decreases
Transmission power is one of the important evaluation indicators of reducer. To test the transmission power requires professional equipment, and it is difficult for customers to measure specific data, but it is possible to do horizontal comparison. Heating is the most intuitive comparison method, let's ...
|
|
Procedure for TCP correction of KUKA robots
1. In the main menu, select the > Measure > Thing > XYZ 4 points.
2. Give a number and a name for the thing to be measured. I admit it with a persistent key.
3. Use TCP to move to a reference point at will. Click Measure. Click Yes to reply to the security question ...
|
|
KUKA robot architecture
Robot architecture refers to the structural method of information processing and manipulation logic of one or several robots that specify the guidelines for completion.
1. Differentiation according to function
According to the architecture of functional differentiation in artificial intelligence, it is attributed to traditional deliberative intelligence in artificial intelligence.
|
|
Technical specifications of KUKA six-axis industrial robots
The six-axis industrial robot is a process test instrument used in the field of natural science related engineering and technology, and the common six-axis joint robot has six built-in servo motors, which directly drive the rotation of the six joint shafts through the reducer and synchronous pulley.
Six-axis industrial robots generally have ...
|
|
Procedure for KUKA to repair and replace the main unit of the control system
KUKA robot repair and replacement of the main engine of the control system:
It is necessary to keep the KUKA robot control system shut down and power-off, and do a good job of relevant inspection and personal maintenance operations, in case the robot is restarted without permission, and the robot's buffer must be sure to ...
|
|
The use of logical functions in robot programs – KUKA robots
Inputs and outputs are used for logic programming, and digital and analog inputs and outputs can be used for communication with the peripherals of the robot control system.
When programming the KUKA robot, the ...
|
|
Handling robot classification - KUKA robots
The transfer robot is a manipulator in practical work, and the manipulator is developed because its positive role is increasingly known:
First, it can partially replace manual operation;
Second, it can follow the requirements of the production process, follow the certain procedures, time...
|
|
Introduction to the internal structure and system of KUKA industrial robots
KUKA Industrial Robot System Introduction, KUKA Robot Co., Ltd. was founded in 1898 in Augsburg, Bavaria, Germany, and is one of the world's leading industrial robot manufacturers. KUKA Robotics has more than 20 subsidiaries around the world, most of which are sales and service centers, ...
|
|
KUKA autonomously navigates mobile robots
With the deepening of Industry 4.0, the demand for automation and intelligence in the internal logistics link of the manufacturing industry is becoming increasingly prominent. That's where the KUKA KMP 600-S diffDrive mobile robot comes in.
This new mobile robot companion ...
|
|
Software functions related to the real-time motion of KUKA robots
KUKA Robot RSI:
KUKA. Robot Sensor Interface
Function:
The data and signals from external sensors are effectively combined with the robot control system, and then the robot movement is corrected and guided.
...
|
|
Variables and instructions related to the operation of external axes – KUKA robots
Switching the axes of the external kuka robot to the bit arrangement in an asynchronous form means switching the synchronous and asynchronous forms of the external axes
Program example: $ ASYNC_AXIS='b1000'
Indicates the outer axis 1, 2, 3, 4 from right to left. The example above shows that an external welding robot ...
|
|
Interference intervals for KUKA robot programming
Robots at the same station, in the process of operation, need to enter the same area, but there is no strict restriction on the order of entry, a robot (Master) has the right of priority, that is, the robot first enters the dry and area, and another robot (Slave) after the operation is completed...
|
|
The difference between KUKA robot inverter and servo manipulator
The servo manipulator controls the manipulator's actions through servo motors and servo drives. The servo manipulator has higher control accuracy than the frequency conversion manipulator and is expensive.
Inverter manipulator is an automatic production equipment that can imitate some functions of the upper limbs of the human body, and can be automatically controlled according to predetermined requirements.
|
|
Classification of vision systems for mobile robots – KUKA KUKA
The vision system of mobile robot refers to the vision system of mobile robot, including two parts: obtaining pictures through sensors and processing pictures through computer processors. According to the number and characteristics of vision sensors, the mainstream mobile robot vision system includes monocular vision, binocular vision, etc.
|
|
When does the KUKA robot need to be corrected?
When calibrating the KUKA robot, the axes are moved to a defined mechanical orientation, i.e. the mechanical zero orientation. This mechanical zero point requires the shaft to move to a bearing that detects the notch or scribing symbol. If the KUKA robot is in the zero position of the machine, it will store the positive detection of each axis ...
|
|
KUKA robot control cabinet maintenance
1. Disconnect all power supply from the control cabinet.
2. View the motherboard, storage board, accounting board, and driver board.
3. Check that there is no debris and dust in the cabinet, check the sealing, and clean the appearance of the robot control cabinet.
|
|
The KUKA robot adjusts the bias operation procedure
If the initial adjustment is lost (e.g. after a motor replacement or a bump), the initial adjustment is reverted. Since the learned error persists after the adjustment is lost, the KUKA robot calculates the initial adjustment. Before checking an axis, it is necessary to complete the ...
|