|
KUKA autonomously navigates mobile robots
With the deepening of Industry 4.0, the demand for automation and intelligence in the internal logistics link of the manufacturing industry is becoming increasingly prominent. That's where the KUKA KMP 600-S diffDrive mobile robot comes in.
This new mobile robot companion ...
|
|
Performance characteristics of KUKA industrial robots
1. Degrees of freedom and degrees of freedom are the main goals to measure the level of robotics. The so-called degrees of freedom refer to the independent motion of moving parts relative to a fixed coordinate system. Each degree of freedom requires a servo axis to drive, so the higher the number of degrees of freedom, the more chaotic the robot can complete the actions ...
|
|
The "four families" of industrial robots - KUKA robots
Industrial robots are the star products of industrial automation, and the 30 billion ontology space is expected to leverage trillions of automation to transform shopping malls. The body space is about 30 billion yuan: the essence of automation is the automation of the process, and the ultimate policy is to improve the total factor yield. Multi-axis industrial robot is an automated ...
|
|
Reducer on the KUKA robot
The most important thing in the human arm is the joints and ligaments, and the most important thing in the robot is in each joint: the reducer. This is a fine power transmission organization, which uses the speed converter of the gear to reduce the number of revolutions of the motor to the desired number of revolutions, and obtains a large torque setting.
|
|
What is the reason behind Germany's Kuka robot willing to be acquired by Midea?
1. When Midea proposed to Kuka to buy the offer, it was indeed blocked by many people. There are opposing voices from Germany's business and political circles, and these people are worried that KUKA's central technology will be grasped by China's manufacturers, which will have a great impact on high-end players in related fields in China and even in the world.
|
|
Variables and instructions related to the operation of external axes – KUKA robots
Switching the axes of the external kuka robot to the bit arrangement in an asynchronous form means switching the synchronous and asynchronous forms of the external axes
Program example: $ ASYNC_AXIS='b1000'
Indicates the outer axis 1, 2, 3, 4 from right to left. The example above shows that an external welding robot ...
|
|
The KUKA Edition robot makes it easy to get started with automated arc welding
KUKA's Edition robot assists new customers in price-sensitive shopping malls in the useful automation of welding tasks. Focus on the main points, have a higher cost-to-benefit ratio, and can obtain the skill set at that time. Initially, the KR CYBERTECH nano ARC was available in two variants of the Editi ...
|
|
The manual movement of industrial robots – KUKA robots
The manual movement method of industrial robots is mainly divided into four control methods: point control method, continuous track control method, force (torque) control method and intelligent control method.
1. Point Control Method (PTP)
This manipulation ...
|
|
KUKA robot architecture
Robot architecture refers to the structural method of information processing and manipulation logic of one or several robots that specify the guidelines for completion.
1. Differentiation according to function
According to the architecture of functional differentiation in artificial intelligence, it is attributed to traditional deliberative intelligence in artificial intelligence.
|
|
The main parameter of the industrial robot is the KUKA robot
The main technical parameters of the robot are freedom, resolution, working space, working speed, working load, etc.
The comfort of the robot refers to the number of independent motion parameters required to determine the orientation and posture of the robot's hand in space. The degree of freedom of the robot is generally equal to ...
|
|
The difference between collaborative robots and traditional robots is KUKA robots
Collaborative robots are only a very important subcategory in the entire industrial chain of industrial robots, which has its best advantages, but the disadvantages are also obvious: in order to control the force and bump ability, the operation speed of collaborative robots is relatively slow, generally only one-third to one-half of traditional robots. ...
|
|
What language is used to program industrial robots – KUKA
1. Hardware Depiction Speech (HDLs)
Hardware depiction language is generally used to describe electrical programming methods.
These words are appropriately familiar to some roboticists, as they are used to programming FPGAs. FPGAs allow you to develop electronic hardware without the need for hands-on work.
|
|
The temperature of the KUKA robot teach pendant prevents malfunctions from occurring
Check if the robot is bumping and see if there is a mechanical load on the corresponding axes. See if the loading settings work. Whether the brake of the corresponding shaft is loosened. If the load component exceeds the additional scale, it is reduced to the constrained scale. Check the voltage input to the controller ...
|
|
Germany Borgward officially signed a contract with KUKA Robotics
On June 21, at the International Robotics and Automation Skills Expo (AUTOMATICA) in Munich, Germany, Germany's Borgward Car Group, a well-known car manufacturer, and KUKA Robotics Co., Ltd., a world-leading industrial robot manufacturer, officially signed a memorandum of understanding on strategic cooperation. Germany...
|
|
How the KUAK robot CIRC operates
1. Auxiliary points
Type: POS, E6POS, FRAME If all the weights of the auxiliary points are not given, the controller will apply the value of the previous azimuth to the short weight. The postural angle within an auxiliary point, as well as the condition and data, are in principle overlooked. The track is not approaching the auxiliary point. ...
|
|
Analysis of KUKA robot control systems
1. Underlying manipulators
As the center of the control system, the applicability of the underlying controller is crucial to the whole system. Its function directly affects the reliability of the control system, the speed of data processing and real-time data collection. The working environment of mobile robots is harsh, and there are many sources of disturbance. Thus...
|
|
Analysis of overheating problem of KUKA robot servo motor maintenance
1. The reason for the overheating problem encountered in the maintenance of KUKA robot servo motor
(1) The power supply voltage is too high;
(2) The power supply voltage is too low, the motor is running with rated load, and the current is too hot for the winding;
(3) When repairing and removing the winding, the thermal dismantling method is improperly selected, which burns the iron core;
...
|
|
Understand the hangar card robot from the analysis of load, accuracy and range
Carrying talents: Speak with strength
The range of mass within which the robot can stand in any direction within its operating range. The load of the robot depends not only on the mass of the load, but also on the speed and direction of the robot. Bearer capacity refers to the load-bearing capacity when running at high speed. Bearing ability is not ...
|
|
Welding attitude adjustment of KUKA arc welding robot
According to the application status and development needs of the welding technology of KUKA welding robots, the traditional welding methods must not be able to meet the production needs to a certain extent, and the arc welding robot technology has been paid more and more attention by manufacturers. How to complete the batch production of arc welding robots, is the current arc welding machine...
|
|
Industrial robots have requirements for joint drive motors
1) Rapidity. The time from obtaining the command signal to the completion of the required working state of the motor should be short. The shorter the time to respond to the command signal, the higher the sensitivity of the electric servo system, and the better the fast response function.
|